Exercise 36

Find equations of the tangent lines to the curve $y=(\ln x) / x$ at the points $(1,0)$ and $(e, 1 / e)$. Illustrate by graphing the curve and its tangent lines.

Solution

Start by taking the derivative of the function with respect to x.

$$
\begin{aligned}
y^{\prime} & =\frac{d}{d x}\left(\frac{\ln x}{x}\right) \\
& =\frac{\left[\frac{d}{d x}(\ln x)\right] x-(\ln x)\left[\frac{d}{d x}(x)\right]}{x^{2}} \\
& =\frac{\left(\frac{1}{x}\right) x-(\ln x)(1)}{x^{2}} \\
& =\frac{1-\ln x}{x^{2}}
\end{aligned}
$$

The slopes of the tangent lines at $x=1$ and $x=e$ are, respectively,

$$
\begin{aligned}
& y^{\prime}(1)=\frac{1-\ln 1}{1^{2}}=\frac{1-0}{1^{2}}=1 \\
& y^{\prime}(e)=\frac{1-\ln e}{e^{2}}=\frac{1-1}{e^{2}}=0 .
\end{aligned}
$$

Therefore, the equations of the tangent lines at the points, $(1,0)$ and $(e, 1 / e)$, are as follows.

$$
\begin{array}{r}
y-0=y^{\prime}(1)(x-1) \\
y-0=1(x-1) \\
y=x-1 \\
y-\frac{1}{e}=0(x-e) \\
y-\frac{1}{e}=0 \\
y=\frac{1}{e}
\end{array}
$$

Below is a graph of the curve and its tangent lines at $(1,0)$ and $(e, 1 / e)$.

